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We present and implement an efficient variational method to simulate two-dimensional finite-size fermionic
quantum systems by fermionic projected entangled pair states. The approach differs from the original one due
to the fact that there is no need for an extra string bond for contracting the tensor network. The method is tested
on a bilinear fermionic model on a square lattice for sizes up to ten by ten where good relative accuracy is
achieved. Qualitatively good results are also obtained for an interacting fermionic system.
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I. INTRODUCTION

The theoretical study of quantum many-body systems pre-
sents one of the most challenging tasks of condensed-matter
physics, computational physics, and quantum chemistry.
Several approaches have been proposed to study quantum
many-body systems, e.g., quantum Monte Carlo �QMC�, dy-
namical mean-field theory �DMFT�, density-matrix renor-
malization group �DMRG� �Refs. 1 and 2�/tensor network
methods.3,4 The latter are best suited to describe physical
systems of local Hamiltonians at zero temperature in one
spatial dimension for which it was shown5–7 that they can be
well approximated by matrix product states �MPSs�.

A generalization of MPS algorithms to two spatial dimen-
sions was given by projected entangled pair states �PEPSs�
�Refs. 8 and 9� algorithms where the quantum state is de-
scribed in terms of entangled pairs on lattice bonds. Those
states capture the entanglement structure needed to represent
states that obey an area law,10 and there are strong arguments
why every ground state of a gapped two-dimensional local
Hamiltonian can be efficiently represented as a PEPS.6,11

All these methods were originally constructed to simulate
quantum spin systems, whereas practical problems in
condensed-matter physics and quantum chemistry are more
often of fermionic nature. A notorious example is the Fermi-
Hubbard model which is believed to be a good candidate for
high-temperature superconductivity. For local Hamiltonians
in one spatial dimension, the distinction between spins and
fermions is irrelevant as any physical fermionic model can
be transformed by Jordan-Wigner transformation to a spin
model where the locality of interaction is preserved. This is
not the case in two-dimensional systems where such trans-
formation would in general convert local interactions to non-
local strings operators. In the case of the ladders it is in
principle possible to use linear DMRG methods if all the
symmetries are exploited12 but such an approach is clearly
not scalable.

Around the same time, two independent approaches to
simulate two-dimensional fermionic systems were proposed:
a generalization of the multiscale entanglement renormaliza-
tion �MERA� �Ref. 13� to fermionic systems14 and the de-
scription of two-dimensional fermionic systems in terms of
fermionic projected pair states �fPEPSs�.11 In the latter, PEPS
were generalized to fermionic systems in a natural way by
considering entangled fermionic pairs instead of entangled

spin pairs. It was also shown that this is a good ansatz and is
in principle able to parametrize ground states of gapped fer-
mionic models. However, in the case of the fPEPS the sign
problem was not solved in a completely satisfactory way as
there was still a need for increasing the bond dimension with
a factor of two if one were to contract this fermionic PEPS
using the standard procedure. The efficient contraction of
fermionic MERA was reinterpreted in terms of fermionic
swap and jump rules15,16 which allowed to generalize the
sign-free contraction also to arbitrary fermionic tensor net-
works, as first reported in Ref. 15 and subsequently in Ref.
17. In these papers, it was also sketched how this formalism
can be used to contract general fPEPS. The first fPEPS simu-
lations albeit without the sign-free contraction rules were
performed in Refs. 18 and 19 under the name Graded PEPS,
and very promising numerical results were reported. Finally,
the full sign-free fPEPS algorithm for infinite lattices was
implemented, together with interesting numerical results on
interacting fermions and the t-J model, in Ref. 20 where also
an explicit scheme for contracting finite-size fPEPS was
given. A crucial element in all those approaches was the
realization of a simple fermionic swapping rule which will
also play an important role in this paper where we focus on
construction of the finite-size fermionic PEPS algorithm.

The most obvious advantage of the finite lattice PEPS
over the infinite PEPS �iPEPS� algorithm is that no assump-
tion of translation invariance symmetry is required. The
finite-size PEPS algorithm is therefore well suited to simu-
late physical systems with an unknown translation invariance
pattern or translation noninvariant �disordered or noisy� sys-
tems. The only input information for the finite PEPS algo-
rithm is the Hamiltonian operator and, possibly, the parity of
the ground state. However, if the symmetries are known,
they can be embedded naturally.21

In this paper, we address the fermionic PEPS �Ref. 11�
entirely in terms of fermions without introducing any addi-
tional bonds between lattice sites but rather embedding all
fermionic signs locally. The crucial element in such descrip-
tion is a fermionic rule used to swap two fermionic tensor
operators.15,17,20 This way the complexity of the method ex-
actly translates to the conventional PEPS for quantum spin
systems �strictly speaking, it is even more efficient due to the
parity constraints�. We are able to efficiently calculate expec-
tation values of arbitrary operators for a given fPEPS state
and efficiently optimize the ground-state approximation for
an arbitrary fermionic system on a rectangular lattice. We
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test the method on an integrable quadratic model on a square
lattice and compare the ground-state energy and the total
particle number to the exact values.

II. FERMIONIC PROJECTED ENTANGLED PAIR STATES

We start with rewriting the original fPEPS ansatz11 in an
alternative way which will allow fermionic manipulations
and consequently sign-free contraction of fermionic PEPS
states. As given in Ref. 11, a quantum state of a fermionic
system on a square lattice can be described in terms of fer-
mionic entangled pair states as

��� = W�� ,�� ,�� ,���
i,j

Qi,j�
i,j

Hi,j�
i,j

Vi,j�0� , �1�

where to each site �i , j� four auxiliary fermions are associ-
ated: �i,j, �i,j, �i,j, and �i,j, connecting the site to the respec-
tive left, right, upper, and lower neighbors. The entangled
pairs on the horizontal and vertical bonds are created �up to
the normalization� by operators Hi,j =1+�i,j

† �i,j+1
† and Vi,j

=1+�i,j
† �i+1,j

† , respectively, and the projection to the space of
physical fermions is given by projectors

Qi,j = Alrudk
�i,j� ci,j

†k�i,j
l �i,j

r �i,j
u �i,j

d . �2�

For brevity, we omit the summation symbol where it is un-
derstood that the summation takes place over all indices that
appear both in subscript and superscript. The expression is
traced over the space of virtual fermions which is formally
designated by the operator W�� ,�� ,�� ,�� which mimics the
vacuum of virtual particles in the subscript, e.g., W��

�������
† and W�� ,�� ,�� ,�� �W�� W��

W��
W��. Note that W�� =W��

† .
We will use a dash notation when referring to sequences m�
��m1 ,m2 , . . .� or tensors Am� �Am1,m2,. . . with the rank given
by the context.

A fundamental feature of fermionic systems due to the
causality is that the system is always in a state with a well-
defined parity, �∀��	��c����=0. When the ansatz �Eq. �1��
is used to describe the ground state of a fermionic system,
one can therefore assume that the projection operators Qi,j
are either parity preserving �Pi,j =0� or parity violating �Pi,j
=1� and can be described by only half of the tensor elements
of A� �i,j�, i.e., �l+r+u+d+k�mod 2� Pi,j ⇒Alrudk

�i,j� =0. The
practical consequence of such assumption is that the projec-
tion operators �Eq. �2�� either commute or anticommute.

Let us consider a m�n lattice of fermions and choose the
row-major order in Eq. �1� by multiplying the projection op-
erators Q� by the entanglement creation operators H� and V�

in Eq. �1�. This results in a description in terms of two types
of virtual fermions �� and �� on horizontal and vertical
bonds, respectively,

��� = W�� ,��
Am,n ¯ A1,n ¯ A1,1�0� �3�

with in general noncommuting operators

Ai,j = Alrudk
�i,j� ci,j

†k�i,j
l �i,j+1

†r �i,j
u �i+1,j

†d �4�

of the same parity as the corresponding Qi,j, i.e., either parity
preserving �Pi,j =0� or swapping �Pi,j =1�. Again, we use the

operator W�� ,��
to mimic the contraction over virtual particles.

A. Expectation values

A starting point in the computation with fermionic tensor
product states is the calculation of expectation values of ar-
bitrary operators. Due to the linearity it is sufficient to cal-
culate the expectation value of an arbitrary product operator

O = Om,n ¯ O1,n ¯ O1,1, �5�

where Oi,j are single-site operators of a well-defined parity
pi,j. Explicitly, each Oi,j can be either parity preserving �pi,j
=0� in which case it can be written as Oi,j =O0,0

�i,j�ci,jci,j
†

+O1,1
�i,j�ci,j

† ci,j for some coefficients O0,0
�i,j� and O1,1

�i,j� or parity
swapping �pi,j =1� such as Oi,j =O0,1

�i,j�ci,j +O1,0
�i,j�ci,j

† for some
coefficients O0,1

�i,j� and O1,0
�i,j�. The expectation value is formally

written as

	��O��� = 	0�A1,1�†
¯ Am,n�† OAm,n ¯ A1,1�0� , �6�

where the conjugated state 	�� is described by a complemen-
tary set of virtual fermions designated by a prime, i.e.,

Ai,j�† = Al,r,u,d,k
�i,j�� �i,j�†l�i,j�†u�i+1,j�d �i,j+1�r ci,j

k . �7�

Exact contraction of such a tensor network, albeit pos-
sible, is inefficient due to the contraction order specified in
Eq. �6�. In order to contract the fermionic tensor network
efficiently, one must be able to first contract over the physi-
cal modes and then contract the double layer in an approxi-
mate way.8 In both steps one must be able to swap the con-
traction order between two tensor operators sharing a
common contraction leg which, as we will show, is possible
due to the parity constraints in fermionic tensor network. The
latter step is performed by merging rows together and repre-
senting the double row by a single row, such that the hori-
zontal bond dimensions remain finite. In order to contract
over the physical modes in the first step, the tensor network
must be written in a way where both tensors corresponding
to a specific site appear together, such as Ai,j

† Oi,jAi,j which
are of a globally defined parity pi,j regardless of parity Pi,j of

Ai,j. Indeed, substituting the result by effective operators Ã�

and Ã	 using a fermionic rule explained in the following,
that is exactly what we are able to achieve. Let us in the
following present a rule which will allow us to rewrite, e.g.,

Ai,j�†Ai,j+1�† = Ãi,j+1� Ãi,j� which is needed to reverse the contrac-
tion order in the conjugate layer. An equivalent rule was
already used in Refs. 15, 17, and 20.

Fermionic swap rule: let us define an arbitrary operator A
and an operator B of well-defined parity pB as

A = Al�a�r�aL
†l��a�aR

r� and B = Bl�b�r�bL
†l��b�†bR

r� , �8�

where we use a notation cm� �c1
m1c2

m2
¯ where cj represents

fermionic annihilation operators. Note that any superposition
of products of fermionic operators can be written in this
form. Then the following statement can be made: the product
AB contracted over all common modes, here explicitly de-
noted by �� ���1 ,�2 , . . .�, can be written in a reverse order
�Fig. 1� as
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W†ABW = W†B̃ÃW with W = W† = �
j

� j� j
†, �9�

where Ã and B̃ are obtained independently from A and B,
respectively, in addition to a global parity sign pB, as

Ã = �Al�a�r��− 1��l�+a�+r��pB�aL
l �a�†aR

r� ,

B̃ = �Bl�b�r��− 1�b��bL
l� �b�bR

r� . �10�

where �−1�x� = �−1�x1+x2+¯.
The fermionic swap rule can be proven in a straight-

forward way by writing the above ansatz and reordering the
fermionic operators where all fermionic signs cancel except
for the parity sign of the contraction product operator. It is
however crucial to assume that at least one of the operators is
of well-defined parity. Otherwise, such decomposition is im-
possible since �−1�xy cannot be decomposed to a product
f�x�g�y� for x ,y� 
0,1� and any functions f and g.

In the context of this paper, both A and B will always be

of well-defined parity. In such a case, the sign factor in Ã in
Eq. �10� becomes a globally defined quantity �−1�pApB which
agrees with the sign produced by commuting A and B when
they share no common fermionic mode.

The only assumption in the above presented fermionic
rule is that one of the operators is of a well-defined parity.
Therefore all fermionic swap rules in Refs. 15, 17, and 20
with more severe constraints �either both A and B are of
well-defined parity or even both are parity preserving� nec-
essarily coincide with the fermionic rule presented here.

Since the parity of Ai,j �and thus Ai,j�†� is well defined by
definition, one may use the swap rule to reverse the contrac-
tion order of Ai,j�† in Eq. �6� such that

A1,1�†
¯ Am,n�† = �− 1� f�P1,1,. . .,Pm,n�Ãm,n� ¯ Ã1,1� ,

where operators Ãi,j� are obtained from Ai,j�† by absorbing the
local fermionic sign factor �−1�l+u arising from swapping
two operators acting on a common virtual fermion,

Ãi,j� = Alrudk
�i,j���− 1�l+u�i,j�l�i,j�u�i+1,j�†d �i,j+1�†r ci,j

k . �11�

This way we are able to bring operators containing the same
physical fermionic operator together and express the expec-
tation value �Eq. �6�� of an arbitrary product operator �Eq.
�5�� in a form

	��O��� = �− 1���
p�P�	0�Km,n

�Om,n�
¯ K1,1

�O1,1��0� , �12�

where operators Ki,j
�Oi,j� are obtained by contracting over the

physical mode as

Ki,j
�Oi,j� = 	Ãi,j� Oi,jAi,j�phys. �13�

In the language of tensor networks, this corresponds to ob-
taining a double-layer structure through contraction over the
physical index in two single-layer structure of PEPS. Opera-
tors Ki,j

Oi,j are of a well-defined parity given by the corre-
sponding operator Oi,j, i.e., pi,j. Therefore, the contraction
order may be chosen arbitrarily using the fermionic swap
rule and anticommutation relations. In the following we will
implicitly assume the dependence of Ki,j

�Oi,j� on the local op-
erator Oi,j and use a compact notation Ki,j.

Due to the canonical anticommutation relations of fermi-
onic operators, the tensor representation of Ki,j is not unique.
Let us first choose a representation where the norm 	� ��� is
expressed as a tensor product

	���� = tr�E� �1,1�
¯ E� �1,n�

¯ E� �m,n�� , �14�

where the multiplication order is given by the lattice bonds.
Such form would enable us to contract the fermionic tensor
network exactly. It is easy to show that this can be achieved
by representing operators Ki,j defined in Eq. �13� in the fol-
lowing form:

Ki,j = El�r�u�d�
�i,j��i,j+1

†r� �i+1,j
†d� �ij

l� �ij
u� , �15�

where all �local� fermionic signs arising in the process are
absorbed in tensor E�i,j�. It should be noted, however, that
due to the fermionic signs the matrix E�l�r�u�d���lrud� is no
longer positive semidefinite nor Hermitian as is the case in
bosonic �spin� systems. Such an exact contraction scheme is
not limited to the calculation of the norm but can be used to
contract exactly the expectation value of an arbitrary product
operator �Eq. �5��. In such a case, tensors E� �i,j� in Eq. �15�
should be replaced by Ẽl�r�u�d�

�i,j� =El�r�u�d�
�i,j� �−1�d��j�
jpi+1,j�, where pi,j is

the parity of Oi,j in Eq. �5�, defined globally.
In order to draw the correspondence with PEPS algo-

rithm, we will choose a different representation of Ki,j where
no signs are produced in contraction over a single row which
will allow us to express the boundary row as a matrix prod-
uct state. This is achieved by the following representation:

Ki,j
�Oi,j� = Kl�r�u�d�

�i,j,Oi,j��i,j+1
†r� �i+1,j

†d� �i,j
u� �i,j

l� , �16�

where again all local signs are absorbed in tensor K� . For sake
of concreteness, let us write the tensor elements K� �i,j� explic-
itly,

Kl�r�u�d�
��,O�� = �− 1� fK�l�,r�,u� ,d� �Al�r�u�d�k�

���� O���
k�kAlrudk

��� , �17�

with O���
k�k= 	0�c�

k�O�c�
†k�0� and sign function fK= l�l+ �l�

+ l��r+u+d�+ �r�+r��u+d�+d�u�+u�+u�u+u�+ l�.
The double layer structure given by pairs of fermionic

operators �i,j
l �i,j�l� and similar can also be interpreted as a

structure given by higher-dimensional objects �i,j
l� and simi-

lar. Evidently, the only property used in the formulation of
fermionic network is the parity and all results also apply to

FIG. 1. Swapping of two operators AB= B̃Ã.
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higher-dimensional objects �i,j
l� where parity of �i,j

l� is given
by

p��i,j
l� � = �p��i,j�l�� + p��i,j

l ��mod 2.

The fact that the parity is the only relevant element in the
anticommutation relations of operators such as Ai,j and Ki,j,
suggests a natural way to generalize the tensor network to
higher bond dimensions by replacing virtual fermionic op-
erators �i,j and �i,j in Eq. �4� by higher dimensional objects
�� i,j and �� i,j, respectively. The rest of the method remains the
same whereas all occupation numbers m appearing in fermi-
onic sign factors are replaced by the corresponding parities
of m� , i.e., p�m� �= ��kmk�mod 2. The only drawback in such
generalization scheme is that it confines the bond dimension
to the powers of two. An alternative generalization scheme is
by combining fermionic and bosonic �spin� degrees of free-
dom where the former would assure fermionic nature of de-
scription, whereas the latter would enlarge the virtual space
to capture more entangled physical systems. This would lead
to bond dimensions that are even.

B. Efficient contraction of fermionic tensor network

Fermionic PEPS can be exactly contracted in a sign-free
way using a suitable representation of operators Kij as shown
in Eq. �14�. However, exact contraction is only possible with
small bond dimension and small lattice sizes since the com-
plexity scales exponentially with the linear lattice dimension
and we have to resort to an approximate contraction
scheme.8 Let us quickly review the approximation scheme to
calculate expectation values as used in the PEPS algorithm.
The first and the last rows are recognized as matrix product
states �1 and �n, respectively, and all inner rows correspond
to matrix product operators � j for j� 
2,3 , . . . ,n−1�. The
expectation value 	�n��n−1�n−2¯�2��1� is calculated by ap-
proximating a product �2��1� by a new matrix product state
��2� of some finite bond dimension22 and proceeding itera-
tively until the expectation value is given by 	� j+1�� j�� j−1�.

In the following we will show how the expectation value
of an arbitrary product operator can be calculated efficiently
in an approximate way, which is equivalent to the approach
in occupation number representation17 or tensor network
approach.20 Taking the advantage of representation �Eq. �16��
of Kij where no signs are produced in the horizontal contrac-
tion we express the first row as a matrix product state

��1� = tr�K� �1,1�d�1
¯ K� �1,n�d�n��2,n

†d�n
¯ �2,1

†d�1�0� , �18�

with matrices �K� �1,j�d��l�,r� =Kl�,r�,0,d�
�1,j,O1,j�. The same applies to the

last row. Inner rows, on the other hand, cannot be repre-
sented as matrix product operators in a form which would
allow immediate contraction with matrix product states due
to the fermionic signs produced by reordering vertical virtual
fermionic operators. Nevertheless, using the fact that the par-
ity of Ki,j is determined globally by the underlying operator
Oi,j, one can change the contraction order in contracting first
two rows to

K2n ¯ K21K1n ¯ K11 = �− 1� fK2nK1n ¯ K21K11, �19�

where f =�i=1
n p1i� j=1

i−1p2j. Note that this step is trivial since
there is no need for fermionic swap rules as no fermionic
modes are crossed. Contracting products K2jK1j over the ver-
tical mode �Fig. 2� and representing the result in form �16�,
we again obtain a matrix product description of form �18�.
This way, the fermionic nature is completely absorbed in the
tensors and all the MPS formalism results apply.

C. Variational simulation of the ground state

There are essentially two ways of simulating the ground
state using tensor networks. The first possibility is the evo-
lution of a PEPS state in imaginary time using the approxi-
mate Trotter decomposition of the evolution operator. The
alternative way is to optimize tensors A� �i,j� site by site in a
variational way such that the total energy E
= 	��H��� / 	� ��� is minimal. While numerical stability of-
ten speaks in favor of the imaginary time evolution, the
variational approach is faster and gives fairly good results
after a single optimization sweep over the lattice. In this
paper, we shall only focus on the latter approach and show
that all fermionic signs which appear in the computation are
absorbed locally into tensors which makes the problem es-
sentially sign free for practical matters and thus well suited
to conventional PEPS techniques.

In the following we will show how to write the total en-
ergy as a function of a tensor A� �i,j� in a sign-free way. Using
the fermionic rule it is easy to show that the expectation
value �Eq. �12�� of an arbitrary product operator can be writ-
ten as

	��O��� = 	0�Ăi,j
† 
i,j

�O�Ăi,j�0� , �20�

where Ăi,j contains all tensor elements of A� �i,j� as

Ăi,j = Al,r,u,d,k
�i,j� ci,j

†k�i,j
†l�i,j+1

†r �i,j
†u�i+1,j

†d ,

whereas 
i,j
�O� contains tensors corresponding to all other lat-

tice sites. Such expression may be easily obtained by replac-
ing Ki,j in Eq. �12� according to Eq. �13� and anticommuting

Ãi,j and Ai,j to the far ends. Finally, all fermionic signs are
absorbed in 
i,j

�O�. Note that the sign in Eq. �12� is cancelled

by commuting Ãi,j� defined in Eq. �11� over all consequent
sites and thus no longer appears in Eq. �20�. Using a conve-
nient representation for 
i,j

�O�, i.e.,

FIG. 2. Merging two rows together Eq. �19� and replacing the
double row by a MPS.
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i,j
�O� = 
l�r�u�d�k�lrudk

�O,i,j�
�

� ci,j�†k��i,j�†l��i,j+1�†r��i,j�†u��i+1,j�†d��i+1,j
d �i,j

u �i,j+1
r �i,j

l ci,j
k ,

�21�

we are able to rewrite the expectation value as an ordinary
scalar product

	��O��� = A� · 
� A� , �22�

where vector elements of A� are given by A�lrudk�
�i,j� and similarly

for matrix elements of 
� given as 
�l�r�u�d�k���lrudk�. This way
the expectation value of a fermionic operator is expressed in
terms of a sign-free linear algebra expression. Note however
that the initial assumption that tensors Alrudk

�i,j� are of well-
defined parity reduces the effective subspace of the vector
space to the even-even or odd-odd sector with respect to
indices �l�r�u�d�k�� and �lrudk�. While operator 
 itself is
always of even parity, i.e., p�l�r�u�d�k�lrudk�=0, no such
requirement is imposed separately to �l�r�u�d�k�� and
�lrudk�. In principle, both subsectors, even-even and odd-
odd, should be obtained separately using the assumption for

the parity of Ă or equivalently, tensor elements Alrudk
�i,j� . How-

ever, since O is in total of even parity, no additional signs are
produced in the odd-odd case where 
ij

�O� is represented in
form �21�.

The total energy 	� �H���� / 	� ��� may be expressed in
terms of effective operators as

E =
A� · H� effA�

A� · N� effA�
, �23�

where N� eff and H� eff are obtained using the above described
procedure for the identity operator and the Hamiltonian op-
erator, respectively, where the latter is written as a superpo-
sition of product operators. Note that the computation of H� eff
is simplified for Hamiltonians with local interactions where
certain operators are grouped together in the �approximate�
contraction process.

The solution A� which minimizes Eq. �23� is formally
given by the lowest eigenvalue solution of a generalized ei-
genvalue problem

H� effA� = �N� effA� , �24�

where Neff is a semidefinite Hermitian matrix and Heff is
Hermitian. Due to the parity constraints, the eigenvalue
problem must be solved separately for both parity subsectors
and the better solution should be retained. The generalized
eigenvalue problem �Eq. �24�� is only well defined if Neff is
nonsingular. In one-dimensional variational MPS with open
boundary conditions one can always renormalize the tensor
network in a way that Neff is exactly equal to the identity
which simplifies the computation and, more importantly,
makes the method stable. In two dimensions, the way to
make PEPS better conditioned remains an open question. In
general, the spectrum of Neff might and does contain very
small values or even zeros, in which case the standard algo-
rithm would produce infinite or ill-disposed eigenvalues. The
ill-conditioned generalized eigenvalue problem must be
solved in an approximate fashion by isolating such invalid

solutions either by projecting out the null space of N� eff or
using more sophisticated algorithms such as Fix-Heiberger
reduction23 where ill-conditioned modes of N� eff are not com-
pletely neglected.

We find that the most stable way is to project the system
to the subspace spanned by well-conditioned eigenvectors of
Neff with respect to a cutoff � and then using the Fix-
Heiberger algorithm with the tolerance ��10� which elimi-
nates all solutions unstable to the perturbation of � to the
matrices H� eff and N� eff. In addition, when a good convergence
is achieved, we optimize the total energy �Eq. �23�� in an
iterative way using the conjugate-gradient method. Neverthe-
less, compromise between efficiency and accuracy versus nu-
merical stability must be made.

III. RESULTS

The finite-size fermionic PEPS method is put to the test
by simulating an exactly solvable bilinear �quadratic� model
on a square lattice. The model consists of three parts: hop-
ping between nearest neighbor, pair creation/annihilation and
chemical potential, described by the following Hamiltonian
operator:24

H = �
		��

�c	
† �c� − �c�

†� + h.c.� − 2�
�

�c�
†c�. �25�

The pairing potential ��0 is used to destroy the total par-
ticle number symmetry and ��0 is the chemical potential.
The same model was also used in Ref. 20 where infinite
fermionic PEPS algorithm was presented. Unlike Refs. 20
and 24 we assume open boundary conditions which is better
suited for finite-size PEPS algorithm. The system is critical
for ��2 �gapless in the thermodynamic limit� and noncriti-
cal �gapped� elsewhere. We choose a line �=1, �� �1,3� in
the parameter space and test the method with respect to the
relative accuracy of the ground-state energy as shown in Fig.
3. For the bond dimension we take either D=2 or D=4
which corresponds to one or two virtual fermions of each
kind, respectively. The maximal bond dimension in the pro-
cess of contracting the double-layer structure �see Ref. 9 for
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FIG. 3. �Color online� Relative error of the ground-state energy
for the quadratic model �Eq. �25�� with �=1 for lattice sizes 10
�10 and 4�4 and bond dimension D=2 and D=4. The truncation

number is in all cases set to D̃=64.
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details� is designated by the truncation number D̃=64 which
will be justified later. As expected, the method performs bet-
ter in the gapped regime ���2� for both system sizes con-
sidered in Fig. 3. For the 10�10 lattice the spectral gap in
the gapped regime at �=1, �=3 is of order of 3 ·10−3�E0�
where E0 denotes the corresponding ground-state energy and
the total energy obtained from the simulation is below the
energy of the first excited state. In the gapless regime, e.g.,
for �=�=1, no guarantee for the ground state is given since
the spectral gap is of order of 10−7�E0�. For the 4�4 lattice
the spectral gap in the gapless regime is of order 10−3�E0�
which is a magnitude larger than the accuracy of the ground-
state energy.

By increasing the bond dimension from D=2 to D=4, the
relative accuracy is improved for an order of magnitude as
seen in Fig. 3 for both lattice sizes 4�4 and 10�10. Note
however, that a fairly good precision is achieved already
with the bond dimension D=2. The algorithm would perform
better for higher bond dimension if one could make PEPS
well conditioned. Namely, with the increasing bond dimen-
sion the problem �Eq. �23�� becomes less conditioned and it
is essential to use Fix-Heiberger procedure �and conjugate
gradient method� to eliminate unstable solutions. If all nearly
singular vectors were simply chopped away, the benefit of
using higher bond dimension would be negligible.

In Fig. 4 we show the convergence of the ground-state
energy and the total particle number as a function of the
number K of single-particle optimizations. The simulation is
done first using the bond dimension D=2 and switching to
D=4 when sufficiently good convergence rate �relative dif-
ference 10−5 for the total energy between two consequent
sweeps� is achieved. We consider three lattices sizes and ob-
serve that a fairly good approximation to the ground state
where the ground-state energy is accurate to 1% is achieved
with less than two sweeps over the lattice. The initial state
was in all cases taken random. After the initial sweep the
convergence becomes slower but the relative error of both
the ground-state energy and the total particle number typi-
cally decays as 1 /K. In variational methods such as PEPS the
ground-state energy is typically more accurate than other ob-

servables such as the total particle number which is also
confirmed in Fig. 4. We have however no explanation for the
oscillations in accuracy for the total number of particles.

Let us now check the validity of the results for various

truncation numbers D̃ used to truncate the large matrix prod-
ucts representing several consecutive rows. As presented in

Fig. 3, we used D̃=64 which turned out to be sufficient to get
good accuracy. In Fig. 5 we present the results for the qua-
dratic model a 8�8 lattice where the same initial state was

taken in all cases. We consider three different values of D̃ for
the bond dimension D=2. Eventually, we start the simulation
with the bond dimension D=4 where the �almost converged�
results from D=2 were taken as the initial state, also magni-

fied on the left side of Fig. 5. We observe that D̃=32 is
insufficient to achieve good accuracy of the ground-state en-
ergy although it gives reasonable results with little effort.

There is virtually no difference between the cases D̃=64 and

D̃=128 except the latter being computationally much more
demanding. As already mentioned in the previous section,
the algorithm eventually produces unstable solutions where
the effective norm operator N� eff in Eq. �24� becomes more
and more ill-conditioned. This is reflected in the oscillations
seen in the magnification of Fig. 5 which are also a sign that
the simulation should be stopped, unless the state is made
better conditioned.

IV. DISCUSSION

The finite-size fermionic PEPS method was tested on a
trivial example of a quadratic integrable model where it was
shown that fairly good results can be achieved for lattice
sizes 10�10. The present formulation is however open to
various improvements and modifications. The first improve-
ment would be beneficial not just for fermionic PEPS but for
all two-dimensional PEPS Ansätze, namely, a way to make
PEPS better conditioned which is of crucial importance for
employing higher bond dimensions. Another possibility
would be to consider higher-order symmetries such as the Zk
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symmetry for which the presented Z2 symmetry algorithm
presents a good starting point.

The fermionic swapping rule allows arbitrary manipula-
tions to the contraction order which enables various enhance-
ments to the presented method. The first is a complementary
way of optimizing tensors A� �i,j� by imaginary time evolution.
The method can also be made more robust in convergence to
the global minimum by adding stochastic updates to the ten-
sor elements which would be beneficial especially with non-
trivial models where the energy landscape is such that one
easily gets stuck in a local minimum. Although such phe-
nomenon was not observed in simulating the integrable
model �Eq. �25��, it might occur for certain interacting mod-
els. Let us briefly consider an interacting model

H = − �
	�	�

�c�
†c	 + H.c.� + V �

	�	�
n�n	, �26�

where the total particle number 	N� for N=�i,jci,j
† ci,j is a

preserved quantity. The algorithm does not always converge
to the global ground state but to the lowest-lying eigenstate
in a particular total-particle number subsector, depending on
the initial state. This issue may be addressed by simulating a
modified model H�=H−	N with the same eigenstates as Eq.
�26�. Various total particle number subsectors are achieved
by tuning the chemical potential.

In Fig. 6 we present the total energy convergence for the
interacting model �Eq. �26�� on a 4�4 lattice with the inter-
action strength V=0.5. Different lines correspond to different
random initial states and bond dimensions as explained in the
figure caption. We observe that in this case a quick conver-
gence to the global minimum �note the exact energy levels
designated by dotted lines� is achieved for all choices of
random initial state although the relative precision is not as
good as in the integrable model. A higher bond dimension
D=4 gives better results after fewer number of iteration steps
but effectively consumes more computational time. Similar
accuracy is obtained when an approximate ground state is

obtained by a small bond dimension D=2 and later switched
to D=4. The simulation however quickly stops due to
achieved relative accuracy between subsequent sweeps. The
fluctuations in the energy in D=4 are explained by the tran-
sitions between rows when an error is made in truncating
large matrix product states �note that the energy is calculated
in an approximate way�. The total particle number is in all
cases in agreement with the exact value in the ground state,
	N�=6 for this choice of parameters. It must be noted that
not every initial state converges to the ground state but might
as well converge to a local minimum. No such case was
however observed for V=0.5 on a 4�4 lattice. It might be
beneficial to tune the chemical potential to influence the
number of particles in the system or start with a good initial
state.

Apart from observables consisting of local contributions
such as the energy or the total particle number, we can also
investigate nonlocal quantities such as correlation functions,
e.g., the density-density correlations 	ni,jni�,j��. In Fig. 7 we
show the density-density correlations for a fixed row �i=3�
for the interacting model �Eq. �26�� on a 4�4 lattice. The
data correspond to the first curve from the left in Fig. 6. For
computational simplicity we only calculate the correlations
after each complete sweep, i.e., every �2mn−2�th step. It can
be seen that in all cases the results practically coincide with
the exact results designated by thin gray horizontal lines with
the absolute error of order of 10−3 as shown in the inset.

V. CONCLUSION

We have presented a finite-size fermionic PEPS method to
simulate ground states of two-dimensional fermionic
systems11 completely in terms of fermionic operators. Using
a fermionic swap rule to reverse the contraction order of two
superpositions of products of fermionic canonical operators
we have shown how a fermionic tensor network can be con-
tracted exactly without introducing any additional sign bond
but instead absorbing all signs locally. Due to the parity con-
straints in fermionic systems we have presented a way,
equivalent to Refs. 17 and 20, to calculate the expectation
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values for arbitrary operators efficiently in an approximate
fashion. Finally, we have implemented the variational PEPS
algorithm on a fermionic lattice and tested it on an integrable
bilinear fermionic model. We have found that the ground
states of such a model can be simulated efficiently with rela-
tively high accuracy in the ground-state energy and the total
number of particles. We have also discussed the performance
of the method in the case of an interacting fermionic system
where the method converges to the global minimum, albeit

with less accurate precision. Besides local observables such
as the energy and the total number of particles, the method
correctly describes also the nonlocal two-point correlations.
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